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The EUROKIN authors (Berger, Hoorn, Verstraete, and Verwijs, www.EUROKIN.org/
paper _par_est 1.pdf) created or adapted the four EUROKIN test cases ".... to create a thorough
inventory of modeling packages suitable for parameter estimation and capable of describing two or more
dimensional reactor models."

It happens that the EUROKIN kinetics test cases fit mostly within the specifications of DMSolver's
capabilities, but are rather challenging in their estimation aspects compared with previous simple
estimation problems that were used to test DMSolver. Consequently in going from version 5.1 to 5.2 of
DMSolver the estimation routines were revised and details of them improved to the point that results
have been obtained for most parts of the four test cases.

The DMSolver least-squares estimation routines are called "add-ins" because the primary type of
problem addressed by DMSolver is simulation by solution of simultaneous systems (such as used to
model reactors), with parameter estimation optional. The add-in code is extra code linked to the
simultaneous solver code. There are two estimation add-ins. The dynamic one is for when one is trying
to fit data which are functions of time (e.g. batch reactor) with a mathematical model involving
integration of differential equations. The static one is for fitting a set of observations with a static model
involving a system of simultaneous algebraic equations (e.g. CSTR). In EUROKIN's Case study 3 for
the first time a case was encountered in which there was no simultaneity, just a single equation. Minor
changes were made so that DMSolver simultaneous solution code would be bypassed without incident.

Because of its capability for simulating larger complex systems, DMSolver input includes source code
which is preprocessed, compiled, and linked so that large simulation problems are computed efficiently.

The DMSolver estimation routines compute numerical derivatives to linearize (in a local region) the
nonlinear regression problem, and they output typical linear-style regression results including the
variance/covariance matrix and a canonical variable analysis, both based on the linearization. To find a
solution for the nonlinear regression problem, the estimation routines look for the minimum in the sum
of squared deviations using a Gauss-Newton, or (as a fall-back) sometimes a gradient approach. It is
also possible to request the typical regression results for the linearized problem even though the
minimum has not been found. These results are not the correct answers but are sometimes useful for
diagnostic purposes when it is difficult to find the minimum. Also, in the current version we have added
a "grid search" mode which simply varies each parameter in equal steps over a specified range and
computes the sum of squares. Sorting on the sum of squares may give a first trial set of values at which
the search can start.

The test cases are presented at the website in www.EUROKIN.org/paper par est 1.pdf and its
associated appendix. In this report we assume the reader refers to a copy of this paper, and we do not try
to describe the test cases in detail.

In the first three test cases, the EUROKIN authors or their predecessors assumed a set of kinetic
parameters, and generated artificial "experimental" data to which random values were added to simulate



real experimental data. Thus the authors know the correct answers for the kinetic parameters and can
judge estimation results accordingly. In the fourth test case, real experimental data were provided from
earlier research.

In all the test cases, the authors specified very completely the mathematical formulation of the
problems, so engineering judgement in formulating the problems is not supposed to be involved, but in
the 4th test case we reduced the number of finite difference intervals to speed up the investigation, and
we deviated from certain details in the 1st test case. In many cases we applied scaling factors to produce
parameters with similar orders of magnitude.

Case study 1

For Case study 1 we did not follow exactly the directions since we did not use the proportional
weighting method suggested. Also the batch reactor and CSTR were only run separately as DMSolver
does not allow the combined approach.

1A The Batch Experments

The beginning of the listing of results for the 4 batch experiments reads:

LSQ Converged
Stopped after 7 Lsg iterations
Number of observations = 40
Weighted sum of sg. err= 1.0790729E-02

Overall R - squared = 0.99878

Fitted Y variable Mean Rms error R - squared Weight
ConcA 2.792E-01 1.114354E-02 0.9989130 1.00E+00
ConcB 5.022E-01 1.264720E-02 0.9973654 1.00E+00
ConcC 2.065E-01 4.721992E-03 0.9997081 1.00E+00
ConcD 2.000E-03 1.370843E-04 0.9966547 1.00E+02
Parameter Value Est Std error T-ratio
kkScl 1.0462890E-02 5.036493E-05 2.077416E+02
kkSc2 1.8625744E-03 1.481167E-05 1.257504E+02
kkSc3 1.5013959E-03 2.451480E-04 6.124446E+00
Eascl 6.3541945E-01 2.644627E-03 2.402681E+02
Easc?2 4.0811112E-01 3.143255E-03 1.298371E+02
Easc3 9.2170265E-01 5.580905E-02 1.651529E+01

This was a very easy problem for the DMSolver least squares routine.

Applying the scaling factors to these results gives
Kory =0.0105

Krery = 0.00186
K;ep3 = 0.0000150

E,| = 63542
E,, =40811
E,; =92170

All the parameters are very significantly different from zero.
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Listing 1 in the appendix shows the user source code for the batch reactor problem. Procedure
ADDSET provides the interface to the estimation routine. The data to be fit are in the database file
EKFits under the data series directory heading EK1A3. Various named data series in this storage
location are connected to variable names in the program by procedure calls in ADDSET. There are four
time-integration runs named Batchl, ..., Batch4, and appropriate initial condition files were prepared
with these names. Parameter scaling occurs in the [F BEFORESOLVE statement.

Procedure PARSET has optional calls which set up a convenient GUI interface for changing various
parameters manually if you want to run a reactor simulation independently of the estimation procedure.

Procedure SETUP is called before each reactor simulation run.

Procedures named so far are written in conventional (Borland-style) Pascal language, but defining a
simultaneous system requires special notation involving what are called XPROC and MPROC
procedures. There are 4 XPROC -type procedures to define the forms of the simultaneous equations and
one MPROC-type procedure with calls to define instances of the equations in the simultaneous system.
The whole simultaneous system is always defined by a procedure named SYSTEM which is the last item
in the source code. There are 8 simultaneous variables. An introduction to DMSolver simultaneous
systems programming methodology appears in the Digital Analytics website.

1B CSTR Experiments

The beginning of the results listing for the continuous reactor case, with 10 CSTR runs is:

LSQ Converged

Stopped after 8 Lsg iterations

Number of observations = 10; from 1 to
Weighted sum of sg. err= 2.8367636E-04

10 with 0 deleted

Overall R - squared = 0.99988

Fitted Y variable Mean Rms error R - squared Weight
ConcA 5.985E-01 7.004891E-03 0.9998776 1.00E+00
ConcB 4.527E-01 2.326867E-03 0.9999145 1.00E+00
ConcC 5.899E-02 1.488570E-03 0.9997297 1.00E+00
ConcD 9.445E-04 1.913915E-05 0.9996810 1.00E+02
Parameter Value Est Std error T-ratio

kkScl 9.5228801E-03 2.878041E-05 3.308806E+02

kkSc2 1.8692912E-03 2.274461E-05 8.218611E+01

kkSc3 1.4054618E-03 2.168866E-04 6.480169E+00

Eascl 6.0005919E-01 3.207517E-03 1.870790E+02

Easc?2 3.8760602E-01 1.238545E-02 3.129527E+01

Easc3 8.9797081E-01 6.590503E-02 1.362522E+01

As can be seen results are similar to those of the batch case but with an even closer fit. With only 8
iterations it was also a very easy problem. The smallest T value is about 6.5, so all the parameters are
determined to a relatively high degree of certainty.

The source code is listed in the Appendix. There are 6 simultaneous variables.



Case study 2

Case Study 2 involves 12 runs of a fixed-bed reactor under various conditions. The source code is
listed in the Appendix, and there are 9 simultaneous variables.

In Case Study 2 several of the parameters for which one is searching are highly interacting, and it is
very difficult to determine values for some of them with any certainty. With this situation, the
DMSolver least-squares algorithm had difficulty deciding that it reached a least squares point and
several times continued to run until reaching an iteration limit (usually 50 iterations) or was stopped
manually. Several runs were made. A representative output is

Stopped after 72 Lsg iterations
14784 Total dynamic integration runs

Number of observations = 12

Weighted sum of sg. err= 1.6657428E+02

Overall R - squared = 0.99474
Fitted Y variable Mean Rms error R - squared Weight
CCB 2.501E+01 2.642329E+00 0.9927164 1.00E+00
Ccc 3.884E+03 4.725586E+00 0.9862265 1.00E-03
CCD 6.454E+02 3.717197E+00 0.9953872 1.00E+00
Parameter Value Est Std error T-ratio
kkl 2.7716009E+02 4.001082E+01 6.927128E+00
kk2 2.6596102E+02 2.751158E+02 9.667241E-01
KlmScaled 4.1563004E+02 3.296342E+03 1.260883E-01
K2mScaled 4.2900409E+02 1.668001E+03 2.571966E-01
K3mScaled 1.0000000E+02 4.949798E+02 2.020285E-01

Removing the scaling factors gives

kkl = 277
kk2 = 266

4.2
43

Klm K3m =

K2m = 0.

0.0010

In the case of K3m the parameter was against the lower bound which was given in the problem
statement. The statistical calculations done by DMSolver's least-squares routine show that kk1 is the
only variable that a statistician would consider "significant" i.e. determined with relatively little
uncertainty. kk2 is less-well determined and the other 3 K's are extremely poorly determined, and a
statistician would remove them from the model, even though the mathematical model fits the results
very well (overall R-squared = 0.99474). The data fits are to the three concentrations (of compounds B,
C, and D) which are achieved at the reactor outlet. These can be displayed graphically as
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Note that with some poorly-determined parameters as indicated by the T-ratio values obtained in the
linearized problem results, there were at least 10 times as many nonlinear search iterations than in
Problem 1, where all the parameters were well-determined.

Case study 3

In this study there are 20 alternative mathematical models, each consisting of only one rate equation.
Since there is only one equation there are no simultaneous variables and the entire DMSolver
simultaneous solver mechanism is unnecessary and gets bypassed when the program runs, although
DMSolver demands that the user go through the motions of setting up a simultaneous problem.

The results can be summarized as follows:

Summary of results listed by equation ("Significant"= <5% chance of being zero)

Eqn  Sumof Sq. of Err . 12 Signif. Param. / Total Param. Comments
1 9.0699770E-13 0.99050 5 /5
2 9.0246291E-13 0.99055 5 /5
3 1.6383011E-12 0.98285 3/5
4 5.1935121E-13 0.99456 5 /5
5 5.5694960E-13 0.99417 5 /5
6 7.6713921E-13 0.99197 5 /5
7 7.6713921E-13 0.99197 5 /5 Same model as 6
8 6.6548898E-11 0.30329 0/ 5
9 1.3464778E-12 0.98590 3/5

10 1.4673276E-11 0.84638 2 /5

11 1.2348825E-12 0.98707 3/ 4

12 1.0512817E-12 0.98899 3/ 4

13 1.1557444E-11 0.87900 1/ 6

14 5.7693922E-13 0.99396 3/ 6

15 1.3685293E-13 0.99857 6/ 6

16 4.9179105E-13 0.99485 3/ 8

17 6.9249403E-13 0.99275 3/ 8

18 6.9249403E-13 0.99275 4 / 8

19 NA 2/ 8

20 3.5424752E-13 0.99629 2 /11

There are many equations which show relatively good fits (high r-squared), but many of these have non-
significant (poorly determined) parameters. It is informative to sort the results by these criteria:

These equations have all-significant parameters (< 5% chance of zero)
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Eqgn Sum of Sq. of Err . r Signif. Param. / Total Param. Comments
15 1.3685293E-13 0.99857 6/ 6

4 5.1935121E-13 0.99456 5/ 5

5 5.5694960E-13 0.99417 5/ 5

6 7.6713921E-13 0.99197 5/ 5

7 7.6713921E-13 0.99197 5/ 5 Same as 6

2 9.0246291E-13 0.99055 5/ 5

1 9.0699770E-13 0.99050 5/ 5



These equations have one or more non-significant parameters (> 5% chance of zero)

Eqn  Sumof Sq. of Err . 12 Signif. Param. / Total Param.
20 3.5424752E-13 0.99629 2 /11
16 4.9179105E-13 0.99485 3/ 8
14 5.7693922E-13 0.99396 3/ 6
17 6.9249403E-13 0.99275 3/ 8
18 6.9249403E-13 0.99275 4 / 8
12 1.0512817E-12 0.98899 3/ 4
11 1.2348825E-12 0.98707 3/ 4
9 1.3464778E-12 0.98590 3/5
3 1.6383011E-12 0.98285 3/5
13 1.1557444E-11 0.87900 1/ 6
10 1.4673276E-11 0.84638 2/ 5
8 6.6548898E-11 0.30329 0/ 5
19 NA 2/ 8 Search difficult, no results

Equation 15 shows the very best behavior by these criteria, whereas equations in the second grouping
should not be seriously considered as adequate models.

In many cases there were large numbers of nonlinear regression search iterations, but with no
simultaneous problem computer cpu time was still small.

With the good behavior of equation 15, there were few search iterations, leading to the following
output:

Stopped after 9 Lsqg iterations
3861 Total system solutions

Number of observations = 27; from 1 to 27 with 0 deleted
Weighted sum of sq. err= 1.3685293E-13
Overall R - squared = 0.99857
Fitted Y variable Mean Rms error R - squared Weight
rMeOH 3.149E-06 7.887070E-08 0.9985673 1.00E+00
Parameter Value Est Std error T-ratio
kkrefsC 1.3219044E+00 1.701081E-01 7.770969E+00
EESC 1.1546282E+00 3.911621E-02 2.951790E+01
K1 2.0714506E-02 5.078206E-03 4.079099E+00
K3 2.1946109E-01 3.108163E-02 7.060798E+00
DH3SC -4.1506515E-01 1.228759E-01 -3.377921E+00
K4 2.1989204E-01 4.707813E-02 4.670789E+00

With scale factors removed and using the original notation:

Kpep = 1.32%1077 K, =0.0207

E, =1.15%10% K;=0219

AHy = - 0.415%10"3 K, =0.220
Case study 4

Whereas Case study 3 has zero simultaneous variables, Case study 4 has the most. When the source
code (see appendix) was set up and preprocessed, DMSolver found 3994 of them. Since DMSolver is
designed with special modular features, the source code is only a little longer than the cases with 8 or 9
simultaneous variables, but of course the CPU time required is unavoidably much longer per iteration.

The first task specified by Case study 4 is to run a simulation with initial test parameters specified by

6



EUROKIN. This task was done successfully. Basically one conclusion was drawn from this: Case study
4 analyses done as directed would be very time consuming. Therefore, the discretization along the
length of the reactor was changed from 500 to 100 intervals and the time discretization criteria were
relaxed somewhat, and it was found that a solution similar to the original could be obtained much faster.
In this case DMSolver finds 794 simultaneous variables. A typical well-behaved simulation takes about
20 seconds. (Admittedly if the equipment available to run the analyses ---Pentium III 733MHz--- were
newer we might not have made such a major change.)

When one lets DMSolver run the least-squares linearization analysis using the initial test parameters
specified by EUROKIN, it is obvious that these test parameters produce a very good fit and are perhaps
considered by EUROKIN as THE answers to Case study 4. The initial part of the analysis output is:

Number of observations = 180

Weighted sum of sqg. err= 2.2600886E-01

Overall R - squared = 0.99086
Fitted Y variable Mean Rms error R - squared Weight
ThetaZzl 1.064E+00 2.368565E-02 0.8839171 1.00E+00
ThetaZz2 1.182E+00 1.252673E-02 0.9914098 1.00E+00
ThetaZz3 1.192E+00 6.633642E-03 0.9977140 1.00E+00
Thetaz4 1.187E+00 1.024785E-02 0.9946783 1.00E+00
ThetaZz5 1.177E+00 9.963080E-03 0.9949960 1.00E+00
ThetaZ6 1.169E+00 8.745504E-03 0.9961202 1.00E+00
Thetaz7 1.163E+00 7.984577E-03 0.9967355 1.00E+00
ThetaEnd 1.158E+00 1.332998E-02 0.9908066 1.00E+00
Parameter Value Est Std error T-ratio
gamTemp 2.0200000E+01 1.313843E-01 1.537474E+02
DarSc 4.1000000E+01 3.374676E-01 1.214931E+02
PeMrSc 1.9600000E+01 3.103332E+00 6.315792E+00
PeHrSc 4.2000000E+00 5.175807E-02 8.114676E+01
UstarSc 1.6000000E+01 6.392248E+01 2.503032E-01

By the usual statistician's reasoning all the parameters except UstarSc are significantly different from
zero, whereas the results show that the value of UstarSc is extremely poorly determined. (Scin a
parameter name means it is scaled compared with the actual parameter. Ustar = 10*UstarSc)

In subsequent nonlinear search trials starting from different starting points such as the one specified by
EUROKIN, the search algorithm would not go near this point again. We decided to perform an exercise
as if the only guidance from EUROKIN were the upper and lower bounds which they give for the
parameters, namely (using the scaled values in the DMSolver program)

15 <= gamTemp<= 25
10 <= DarSc <=100
1 <= PeMrSc <= 25
1 <= PeHrSc <= 25
10 <= UstarSc<= 20

These ranges were used in the "grid search" feature of the DMSLSQ estimation add-in. After a run
during which a equi-spaced grid of 108 simulations was traversed, the best case encountered was

gamTemp = 15
DarSc = 100
PeMrSc = 25
PeHrSc = 13
UstarSc = 10

Wt'd Sum of squared errors = 2.9031
equiv r-squared = 0.8826



The run took considerably longer than 108 times typical run time = 36 minutes because for odd
unworkable combinations of parameters the algorithm takes longer, especially since it eventually gave
up in a few of the 108 cases.

The best grid point case was used as a starting point for a nonlinear regression search. In the grid
search the upper and lower bounds are used to form the grid, whereas in the nonlinear regression search
the same input numbers are used to limit the space over which the search occurs, but hitting a bound
causes the search algorithm to stall badly, so it is necessary to widen the bounds greatly, sometimes to
surprising amounts. After several runs between which bounds were widened, the search algorithm
arrived at the following linearized results:

Number of observations = 180
Weighted sum of sq. err= 3.7222824E-01

Overall R - squared = 0.98495

Fitted Y variable Mean Rms error R - squared Weight
ThetaZzl 1.064E+00 2.726881E-02 0.8461384 1.00E+00
ThetaZz2 1.182E+00 2.522250E-02 0.9651742 1.00E+00
ThetaZz3 1.192E+00 1.223017E-02 0.9922299 1.00E+00
Thetaz4 1.187E+00 9.508406E-03 0.9954186 1.00E+00
ThetaZz5 1.177E+00 8.821074E-03 0.9960774 1.00E+00
ThetaZ6 1.169E+00 8.912141E-03 0.9959709 1.00E+00
Thetaz7 1.163E+00 9.366873E-03 0.9955073 1.00E+00
ThetaEnd 1.158E+00 1.581796E-02 0.9870545 1.00E+00
Parameter Value Est Std error T-ratio

gamTemp 1.7346845E+01 1.571322E-01 1.103965E+02

DarSc 4.9153015E+01 5.792363E-01 8.485831E+01

PeMrSc 1.6372044E+02 2.135104E+402 7.668031E-01

PeHrSc 3.9332324E+00 5.659902E-02 6.949295E+01
UstarSc 4.9344530E+01 2.103243E+02 2.346117E-01

Comparing this vs the (probably "correct") EUROKIN test parameters we have

gamTemp 17.4 vs 20.2
DarSc 49.2 vs 41
PeMrSc 163.7 vs 19.6
PeHrSc 3.9 vs 4.2
UstarSc 49.3 vs 16

Although the search algorithm was able to raise the equivalent r-squared from 0.8826 to 0.9850 it was
not able to approach the value of 0.9909 obtained with the EUROKIN test parameters. Its final
linearized results output identified a high level of correlation between the UstarSc and PeMrSc
parameters as well as showing that these are poorly determined, and these parameters are the two which
differ widely from the EUROKIN test parameters.

Also, even a fragment of linearization output using the grid search results parameters directly shows
that UstarSc is not well-determined:

Parameter Value Est Std error T-ratio
gamTemp 1.5000000E+01 6.077017E-01 2.468316E+01
DarSc 1.0000000E+02 4.373078E+00 2.286719E+01
PeMrSc 2.5000000E+01 3.676082E+00 6.800718E+00
PeHrSc 1.3000000E+01 9.432151E-01 1.378265E+01
UstarSc 1.0000000E+01 2.002732E+01 4.993180E-01

If the analysis is repeated starting from the grid search results but dropping UstarSc as a least-squares
parameter the following results are obtained (after roughly an hour). Dropping a parameter simply
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involves putting comment marks around its call in ADDSET and its scaling statement (if any) and
making sure its desired value (in this case, 100 unscaled) is manually entered into its menu.

Stopped after 8 Lsqg iterations
147 Total dynamic integration runs

Number of observations = 180

Weighted sum of sq. err= 1.9508410E-01

Overall R - squared = 0.99211
Fitted Y variable Mean Rms error R - squared Weight
ThetaZzl 1.064E+00 2.280395E-02 0.8917872 1.00E+00
ThetaZz2 1.182E+00 1.434493E-02 0.9886712 1.00E+00
ThetaZz3 1.192E+00 6.009614E-03 0.9981132 1.00E+00
Thetaz4 1.187E+00 6.225990E-03 0.9980246 1.00E+00
ThetaZz5 1.177E+00 6.699178E-03 0.9977247 1.00E+00
ThetaZ6 1.169E+00 6.552096E-03 0.9978099 1.00E+00
Thetaz7 1.163E+00 6.478120E-03 0.9978389 1.00E+00
ThetaEnd 1.158E+00 1.310418E-02 0.9910649 1.00E+00
Parameter Value Est Std error T-ratio
gamTemp 1.9785703E+01 1.022234E-01 1.935536E+02
DarSc 4.2869673E+01 1.039489E-01 4.124111E+02
PeMrSc 7.3851223E+01 3.062524E+01 2.411450E+00
PeHrSc 4.6556722E+00 4.754986E-02 9.791138E+01

Again comparing vs the EUROKIN test parameters we have

gamTemp 19.8 vs 20.2
DarSc 42.9 vs 41
PeMrSc 73.9 vs 19.6
PeHrSc 4.7 vs 4.2
UstarSc 10 assumed vs 16

Weighted sum of sg. err= 0.19508410 vs 0.22600886
Overall R - squared = 0.99211 vs 0.99086

It appears that the values DMSolver selected are "better" than the EUROKIN test values, because the fit
error is less and the r-squared higher, but the values of parameters Ustar especially, and PeMr both have
considerable uncertainty.

How do we know that UstarSc = 10 ? This is just an assumption which came about from the grid
search.

If we were working with conventional linear regression we might want to state a 95% confidence
interval for PeMrSc as something like 74 +/- 62 (from the case presented on this page), or perhaps 19.6
+/- 6 from page 7. The page 7 results also would indicate UstarSc = 16 +/- 128. However, with
nonlinear regression this would be an extreme oversimplification. The results still indicate sizeable
uncertainty, i.e. the parameters are not significant.

In working with Case study 3 and its single equations there was not too much problem with running
thousands of grid points and hundreds of least-squares iterations on problems with poorly-determined,
insignificant parameters to see if the algorithm could find a minimum. With Case study 4 and its
simulation, a strategy had to be developed to avoid excessive computation time. The DMSolver
estimation routines are not as automatic as one might want, but a user is able to implement various
strategies, as we have demonstrated.



Appendix ---- Program Listings---in Pascal with some special Solver keywords

Listing 1 ---- EUROKIN Problem 1(A) --- Isothermal Batch Reactor

VAR { global variable defs }
KA, KB, Keq, kkl, kk2, kk3,TK,CCAstart, kkrefl, kkref2, kkref3
,Eal,Ea2,Ea3,Eascl,Easc2,Easc3, kkscl, kksc2,kksc3, Tref, RcpTstar:DOUBLE;
CONST
R:SINGLE=8.314; { J/(mol K) }

PROCEDURE ADDSET; {define least-squares problem and linkage to database }
begin
_DLSQSETUP ('EKFits', '"EK1IA3'); {least-squares database name and DSDir}
_DLSQRUN ('Batchl',0,451,0.01,1,1,10); {solver integration runs}
_DLSQRUN ('Batch2',0,451,0.01,2,11,20);
_DLSQRUN ('Batch3',0,451,0.01,3,21,30);
_DLSQRUN ('Batch4',0,451,0.01,4,31,40);
_LSQOBETA (kkscl, "kkScl'") ; {parameters to be estimated -- scaled}
_LSOBETA (kksc2, "kkSc2'") ;
_LSOBETA (kksc3, "kkSc3"'") ;
_LSQBETA (Eascl, '"Eascl')
)
)

~ o~~~ o~~~ —~

_LSOBETA (Easc2, "Easc2'
_LSOBETA (Easc3, "Easc3'
_LSQINDEP (TK, 'TempK') ; {independent variables}
_LSQINDEP (CCAstart, 'CCAstart');
_DLSQDEP (_X.CCA.I,'ConcA'"); {dependent variables to be fit}
_DLSQDEP(_X.CCB.I,'ConcB');
_DLSQDEP(_X.CCC.I, 'ConcC");
DLSQDEP( “X. CCD.I, 'ConcD'");
IF BEFORESOLVE THEN{remove scaling factors to get actual parameters}
begln
kkrefl:=kkscl;
kkref2:=kksc2;
kkref3:=0.01*kksc3;
Eal:=100000*Eascl;
Ea2:=100000*Easc2;
Ea3:=100000*Easc3;
end;
end;

PROCEDURE SETUP; {set up values before each integration run}

begin
KA:=EXP ((35000/TK - 91)/R);
KB:=EXP ((20000/TK - 53)/R);
Keq::4.29E—O4*(KA/KB)*EXP(3000O/(R*TK));
Tref:=330;
RcpTstar:=1.0/TK - 1.0/Tref;
kkl:=kkrefl*EXP (- (Eal/R) *RcpTstar) ;
kk2:=kkref2*EXP (- (Ea2/R) *RcpTstar) ;
kk3:=kkref3*EXP (- (Ea3/R) *RcpTstar) ;
_X.CCA.I:=CCAstart;

end;

PROCEDURE TIMESET;

begin
{ NO ACTION ---Optional statements setting parameters as
functions of time T go here.}

end;

PROCEDURE REPORT;
begin

{ Optional reporting statements here---NONE }
end;
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PROCEDURE PARSET; {to define convenient menus for manual setting of params}

begin
_PARD (1, 'Reactor temp', 'deg K','TK',TK,330);
_PARD (3, 'Starting A', 'mol/m3', 'CCAstart',CCAstart,1.10);
_PARD (-1, 'Rate parameter 1','mol/(m3 s)','kkrefl', kkrefl, 0.05);
_PARD (-1, 'Rate parameter 2','mol/(m3 s)','kkref2', kkref2,0.05);
_PARD (-1, 'Rate parameter 3','mol/ (m3 s)', 'kkref3d',6 kkref3,0.0005);
_PARD(1, 'Activation Energy 1','Jd/mol','Eal',Eal,50000);
_PARD(1, 'Activation Energy 2','Jd/mol','Ea2',Ea2,50000);
_PARD(1, 'Activation Energy 3','Jd/mol','Ea3',Ea3,50000);

end;

PROCEDURE USERBPR;
begin

_LSQGO; {required for all 1lsqg: run least squares when U command given}
end;

XPROC DenomCalc (VAROT D:XVR; VARIN A,B:XVR); {simul var D = function of A, B}
VAR DV:DOUBLE;
begin

DV:= 1.0 + KA*A + KB*B;

IF DV<1.0E-06 THEN

begin

WRITELN ('Denom ERR'); DV:=1.0E-06; ERRINT

end;

D:=DV;
end;

XPROC ProdCalc (VAROT Rate:XVR; VARIN CC,DD:XVR; kk,K:DOUBLE) ;
begin

Rate:= kk*K*CC/DD;
end;

XPROC ARateCalc (VAROT Rate:XVR; VARIN AA,BB,DD,Drate:XVR);
begin

Rate:= -kkl*KA* (AA-BB/Keq) /DD - Drate;
end;

XPROC MatlBal (VAROT BB:XVR; VARIN AA,CC,DD:XVR);
begin

BB:=CCAstart - AA - CC - DD;
end;

MPROC SYSTEM; {simultaneous system}
VAR
cca,CcB, Cccc,Ccch, CCAdot, CCCdot,CCDdot, Denom: XVR;
begin
DenomCalc (Denom, CCA, CCB);
ARateCalc (CCAdot,CCA,CCB, Denom, CCDdot) ;
ProdCalc (CCCdot, CCB, Denom, kk2, KB);
ProdCalc (CCDhdot, CCA, Denom, kk3, KA);
MatlBal (CCB, CCA, CCC, CCD);
PMSINTEG (CCA, CCAdot); {integrator calls}
PMSINTEG (CCC, CCCdot) ;
PMSINTEG (CCD, CCDdot) ;
end;

{ end of source code }
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Listing 2 EUROKIN Problem 1(B) --- CSTR Reactor

VAR
KA, KB, Keqg, kkl,kk2, kk3,TK,CCAstart, kkrefl, kkref2, kkref3
,Eal,Ea2,Ea3,Eascl,Easc2,Easc3, kkscl, kksc2,kksc3, Tref,RcpTstar, Tau:DOUBLE;
StA, StB, StC, StD:SINGLE;

CONST
R:SINGLE=8.314; { J/(mol K) }

PROCEDURE ADDSET;
begin
_LSQSETUP ('EKFits','EK1B1',1,10);
_LSOBETA (kkscl, "kkScl'");
_LSOBETA (kksc2, "kkSc2")
_LSOBETA (kksc3, 'kkSc3"'");
_LSQBETA (Eascl, "Eascl') ;
)
)

’

—~ e~~~

’

_LSOBETA (Easc2, "Easc2'
_LSOBETA (Easc3, "Easc3'
_LSQINDEP(TK,'TempK');
_LSQINDEP (CCAstart, 'CCAstart');
_LSQINDEP (Tau, 'TauSec') ;
_LSQDEP (_X.CCA.I, 'ConcA',StA);
_LSQDEP (_X.CCB.I, 'ConcB',StB);
_LSQDEP(_X.CCC.I, 'ConcC',StC)
_LSQDEP (_X.CCD.I, 'ConcD',StD)
IF BEFORESOLVE THEN
begin
kkrefl:=kkscl;
kkref2:=kksc2;
kkref3:=0.01*kksc3;
Eal:=100000*Eascl;
Ea2:=100000*Easc?2;
Ea3:=100000*Easc3;
end;
end;

’

’

’

PROCEDURE SETUP;
begin
KA:=EXP ((35000/TK - 91)/R);
KB:=EXP ((20000/TK - 53)/R);
Keq::4.29E—O4*(KA/KB)*EXP(3000O/(R*TK));
Tref:=330;
RcpTstar:=1.0/TK - 1.0/Tref;
kkl:=kkrefl*EXP (- (Eal/R) *RcpTstar) ;
kk2:=kkref2*EXP (- (Ea2/R) *RcpTstar) ;
kk3:=kkref3*EXP (- (Ea3/R) *RcpTstar) ;
end;

PROCEDURE TIMESET;

begin

{ Empty because static problem }
end;

PROCEDURE REPORT;
begin

{ Optional reporting statements here }
end;

PROCEDURE PARSET;
begin
_PARD (1, 'Reactor temp', 'deg K','TK',TK,330);
_PARD (3, 'Starting A', 'mol/m3"', 'CCAstart',CCAstart,1.10);
_PARD (-1, 'Rate parameter 1','mol/(m3 s)', 'kkrefl',6 kkrefl, 0.05);
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_PARD (-1, 'Rate parameter 2','mol/(m3 s)','kkref2', kkref2,0.05);
_PARD (-1, 'Rate parameter 3','mol/ (m3 s)', 'kkref3d',6 kkref3,0.0005);
_PARD(1, 'Activation Energy 1','Jd/mol','Eal',Eal,50000);
_PARD(1, 'Activation Energy 2','Jd/mol','Ea2',Ea2,50000);
_PARD(1, 'Activation Energy 3','Jd/mol','Ea3',Ea3,50000);

PARD (1, 'Residence time', 'sec', 'Tau',Tau, 90);

PROCEDURE USERBPR;
begin

_LSQGO;
end;

XPROC DenomCalc (VAROT D:XVR; VARIN A,B:XVR);
VAR DV:DOUBLE;

begin
DV:= (1.0 4+ KA*A + KB*B)/Tau;
IF DV<1.0E-06 THEN
begin
WRITELN ('Denom ERR'); DV:=1.0E-06; ERRINT
end;
D:=DV;
end;

XPROC ProdCalc (VAROT Rate:XVR; VARIN CC,DD:XVR; kk,K:DOUBLE) ;
begin

Rate:= kk*K*CC/DD;
end;

XPROC AdifCalc (VAROT Rate:XVR; VARIN AA,BB,DD,Dconc:XVR) ;
begin

Rate:= -kkl*KA* (AA-BB/Keq) /DD - Dconc;
end;

XPROC MatlBal (VAROT BB:XVR; VARIN AA,CC,DD:XVR);
begin

BB:=CCAstart - AA - CC - DD;
end;

XPROC ACalc (VAROT AA:XVR; VARIN ADif:XVR);
begin

AA:=CCAstart + ADif;
end;

MPROC SYSTEM;

VAR
CCA,CCB,CCC,CCD,CCAdif, Denom:XVR;

begin
DenomCalc (Denom, CCA, CCB);
ADifCalc (CCAdif,CCA,CCB,Denom,CCD) ;
ACalc (CCA,CCAdif) ;
ProdCalc (CCC, CCB, Denom, kk2, KB);
ProdCalc (CCD, CCA, Denom, kk3, KA);
MatlBal (CCB, CCA, CCC, CCD);

end;
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Listing3 EUROKIN Case study 2 ---- Tubular reactor with mass transfer considerations

VAR
CCA, CCBO,CCCO,CCDO, kk1, kk2,K1lm, K2m, K3m, K1mSC, K2mSC, K3mSC : DOUBLE ;

PROCEDURE SETUP;

begin
_X.CCB.I:=CCBO; {Set concentrations to initial vals at beginning}
~X.CCC.I:=CCCO;
_X.CCD.I:=CCDO;

end;

PROCEDURE TIMESET;
begin
{ Optional statements setting parameters as
functions of time T go here--none in this problem.}
end;

PROCEDURE REPORT;
begin

{ Optional reporting statements here }
end;

PROCEDURE PARSET; { Interactive user setting of parameters. }

begin

_PARD (4, 'Concentration of A','','CCA',CCA,2.67);
_PARD (4, "Inlet concentration of B','','CCBO',CCB0,25.39);
_PARD(1, "Inlet concentration of C','','CCCO',CCC0,3918);
_PARD(2, "Inlet concentration of D','',6'CCDO',CCDO0,610.8);
_PARD(2, '"Kinetic constant kkl1','','kkl',kkl,300);
_PARD(2, "Kinetic constant kk2','','kk2',6kk2,300);
_PARD (4, 'Kinetic constant Klm','', 'Klm',Klm,3);

PARD (5, '"Kinetic constant K2m','', 'K2m',K2m,0.3);

(6 "y

, 'Kinetic constant K3m', '"K3m',K3m,0.003) ;

PROCEDURE ADDSET; { Estimation of 5 parameters using 12 expt. runs. }
begin

_DLSQSETUP ('EKFITS', 'EK21");

_DLSQRUN ('Expt01',0,0.165,0.001,1,1,1

_LSOBETA (kk2, "kk2");
_LSQBETA (K1mSC, 'KlmScaled') ;
_LSOBETA (K2mSC, 'K2mScaled') ;
_LSOBETA (K3mSC, 'K3mScaled') ;
_LSQINDEP(CCA,'CCA');
_LSQINDEP(CCBO,'CCBO');
_LSQINDEP(CCCO,'CCCO');
LSQINDEP (CCDO, 'CCDO") ;
) ;
) ;
)

’ )7

_DLSQRUN ('Expt02',0,0.165,0.001,2,2,2);
_DLSQRUN ('Expt03',0,0.165,0.001,3,3,3);
_DLSQRUN ('Expt04',0,0.232,0.001,4,4,4);
_DLSQRUN ('Expt05',0,0.232,0.001,5,5,5);
_DLSQRUN ('Expt06',0,0.232,0.001,6,6,6);
_DLSQRUN('Expt07',0,0.165,0.001,7,7,7);
_DLSQRUN ('Expt08',0,0.165,0.001,8,8,8);
_DLSQRUN ('Expt09',0,0.165,0.001,9,9,9);
_DLSQRUN ('Exptl10',0,0.232,0.001,10,10,10);
_DLSQRUN('Exptll',0,0.232,0.001,11,11,11);
_DLSQRUN ('Exptl12',0,0.232,0.001,12,12,12);
_LSQBETA (kk1, 'kk1'");

(

(

(

_DLSQDEP (_X.CCB, 'CCB'
_DLSQDEP (_X.CCC, 'CCC'
_DLSQDEP (_X.CCD, 'CCD'
IF BEFORESOLVE THEN

’
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begin
Klm:=K1lmSC/100; {scaled parameters to actual parameters}
K2m:=K2mSC/1000;
K3m:=K3mSC/100000;
end;
end;

PROCEDURE USERBPR;
begin

_LSQGO;
end;

XPROC DenomCalc (VAROT Den:XVR; VARIN AAS,BBS,C:XVR) ;
VAR DDD:DOUBLE;
begin
DDD:=1.0 + Sqgrt (KIM*AAS) + K2m*BBS + K3m*C;
Den:=DDD*DDD*DDD;
end;

XPROC Reactl (VAROT RRRI1:XVR; VARIN AAS,BBS,Den:XVR) ;

begin
IF Den>1.0E-06 THEN RRRI1:=kkl1*KIm*K2m*AAS*BBS/Den
ELSE
begin
WRITELN ('Small denominator');
ERRINTX (Den) ;
end;
end;

XPROC React2 (VAROT RRR2:XVR; VARIN AAS,CCC,Den:XVR) ;

begin
IF Den>1.0E-06 THEN RRR2:=kk2*KIm*K3m*AAS*CCC/Den
ELSE
begin
WRITELN ('Small denominator');
ERRINTX (Den) ;
end;
end;

XPROC Eqgl (VAROT Brate:XVR; VARIN BBB, BBS:XVR) ;
begin

Brate:=-1442* (BBB-BBS) ;
end;

XPROC Eg2 (VAROT Crate:XVR; VARIN RR1,RR2:XVR) ;
begin

Crate:=28.8* (RR1-RR2) ;
end;

XPROC Eg3R (VAROT AAS:XVR; VARIN RR1,RR2:XVR) ;
begin

AAS:=CCA- (RR1+RR2)/9.88;
end;

XPROC Eg4R (VAROT BBS:XVR; VARIN BBB,RR1:XVR) ;
begin

BBS:=BBB-(28.8/1442) *RR1;
end;

XPROC MatlBal (VAROT DDD:XVR; VARIN BBB,CCC:XVR) ;
begin

DDD:=CCB0O+CCC0+CCD0-BBB-CCC;
end;
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MPROC SYSTEM;
VAR
CCB, CCC,CCD, CCAs,CCBs,CCBRdot,CCCdot,R1,R2,Denom: XVR;
begin
DenomCalc (Denom, CCAs,CCBs, CCC) ;
Reactl (R1,CCAs, CCBs, Denom) ;
React2 (R2,CCAs, CCC, Denom) ;
Egl (CCBdot, CCB, CCBs) ;
Eg2 (CCCdot,R1,R2) ;
Eg3R (CCAs,R1,R2) ;
Eg4R (CCBs,CCB,R1) ;
MatlBal (CCD, CCB,CCC) ;
PMSINTEG (CCB, CCBdot) ;
PMSINTEG (CCC, CCCdot) ;
end;
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Listing 4 Typical Case study 3 Program Code --- Equation 15 (the best one)

VAR
kkref, kkrefSC, EE, EESC,K1,K3,DH3,DH3SC,K4,Keq:DOUBLE;
DumR:SINGLE;

PROCEDURE SETUP;
begin
end;

PROCEDURE TIMESET;
begin
end;

PROCEDURE REPORT;
begin
end;

PROCEDURE PARSET;
begin
end;

PROCEDURE ADDSET;
begin
_LSQSETUP ('EK3DB', 'EK315A',1,27);
_LSQBETA (kkrefSC, 'kkrefSC') ;
_LSQOBETA EESC, "EESC'") ;
_LSQOBETA K1,'K1l");
_LSQOBETA K3, 'K3");
_LSQOBETA DH3SC, "DH3SC") ;
_LSQBETA(K4,'K4');
_LSQINDEP( X.pCO.I,'pCO'");
_LSQINDEP( X.pH2.I,'pH2');
_LSQINDEP( X.pMeOH.I, 'pMeOH');
_LSQINDEP(_X.RRTStar.I,'RRTStar');
_LSQINDEP (Keq, 'Keq'") ;
_LSQDEP(_X.Rate.I, 'rMeOH', DumR) ;
IF BEFORESOLVE THEN
begin
kkref:=kkrefSC*1.0E-07;
EE:=EESC*1.0E+05;
DH3:=DH3SC*1.0E+05;
end;
end;

—~ o~~~

PROCEDURE USERBPR;
begin

_LSQGO;
end;

XPROC EK315eqn (VAROT RR:XVR; VARIN PC, PH,PM,RRT:XVR) ;
VAR DENOM:DOUBLE;
begin
DENOM:= (1.0+K1*PC+K3*EXP (-DH3*RRT) *PM+K4*PH/PC) *PC*PH;
RR:=kkref*EXP (-EE*RRT) * (PC*SQR (PH) ~PM/Keq) /DENOM;
end;

MPROC SYSTEM;
VAR
PCO, pH2, pMeOH, RRTstar, Rate:XVR;
begin
EK315eqgn (Rate, pCO, pH2, pMeOH, RRTstar) ;
end;
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Listing 5 EUROKIN Case study 4 ---- Tubular reactor with reaction, dispersion,
and wall heat transfer

VAR
PhiV, gamTemp, Dar, PeMr, PeHr,Ustar, DelTadr, omegaH: DOUBLE;
PhiVA, PsiBA, TimeA, ThetaOA:ARRAY[0..180]0F SINGLE;
HH, HHSQ:SINGLE;
CvalM,CvVal0,CvValP, TvValM, TVal0, TValP:DOUBLE;
DarSc, PeMrSc, PeHrSc,UstarSc:DOUBLE;

PROCEDURE SETUP;
VAR TF:TextFile; I:INTEGER;
CONST
NeedTheTimData: BOOLEAN=TRUE;
begin
IF NeedTheTimData THEN
begin
WRITELN ('Reading data file');
ASSIGNfile (TF, 'TimVars.txt');
RESET (TF) ;
FOR I:=0 TO 180 DO READLN(TF,TimeA[I],PhiVA[I],PsiBA[I],ThetaOA[I])
CloseFile (TF);
HH:=1/100;
HHSQ:=HH*HH;
NeedTheTimData:=FALSE;
end;
CValP:=1/ (PeMr*HHSQ) ;
TValP:=1/ (PeHr*HHSQ) ;
end;

procedure GetTimVars (TT:DOUBLE; VAR VV,BB,TO0:DOUBLE) ;
CONST ITM:INTEGER=0; IT:INTEGER=1;

VAR
FAC, UMF : D DOUBLE;
begin
IF TT<TimeA[ITM] THEN
begin
ITM:=0; IT:=1
end;
WHILE (TT>=TimeA[IT])AND(IT<180) DO
begin
IT™M:=IT;
INC(IT);
end;
IF TT=TimeA[ITM] THEN
begin
VV:=PhiVA[ITM]; BB:=PsiBA[ITM]; TO:=ThetaOA[ITM]
end
ELSE IF TT>TimeA[IT] THEN
begin
VV:=PhiVA[IT]; BB:=PsiBA[IT]; TO:=ThetaOA[IT]
end
ELSE
begin
FAC:=(TT-TimeA[ITM])/ (TimeA[IT]-TimeA[ITM]) ;
UMF:=1.0-FAC;
VV:=FAC*PhiVA[IT]+UMEF*PhiVA[ITM] ;
BB:=FAC*PsiBA[IT]+UMF*PsiBA[ITM] ;
TO:=FAC*ThetaOA[IT]+UMEF*ThetaOA[ITM] ;
end;
end;
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PROCEDURE TIMESET; { Time-varying specifications}

begin
GetTimVars( T,PhiV, X.PsiB.I, X.Theta0.I);
CValM:=(1/ (PeMr*HH) +PhiV) /HH;
CValO:=(2/ (PeMr*HH) +PhiV) /HH;
TValM:=(1/ (PeHr*HH) +PhiV) /HH;
TValO:=(2/ (PeHr*HH) +PhiV) /HH;

end;

PROCEDURE REPORT;
begin

{ Optional reporting statements here--none }
end;

PROCEDURE PARSET; {manual changing of parameters}

begin
_PARD (3, "Activation Temp', 'dimensionless', 'gamTemp', gamTemp,20.2);
__PARD (3, 'Damkoehler No.', 'dimensionless', 'Dar',Dar,0.41);
PARD (3, 'Peclet No., Mass', 'dimensionless', 'PeMr',PeMr,196);

, '"Heat transf. coeff.','dimensionless', 'Ustar',Ustar,160);
, 'Adiabatic Temp Rise', 'dimensionless', 'DelTadr',DelTadr,0.34);

(3
(3
(3
PARD (3, 'Peclet No., Heat',6 'dimensionless', 'PeHr',PeHr,42);
(3
(3
(3, "Heat Cap. Ratio', 'dimensionless', 'omegaH',omegaH,11.67);

PROCEDURE ADDSET; {define least-squares problem}
begin

_DLSQSETUP('EK4DBA','EK4A1');

_DLSQRUN ('RunA',0,6,0.001,1,1,180);

_LSQBETA (DarSc, 'DarSc') ;
_LSQBETA (PeMrSc, 'PeMrSc') ;
_LSQBETA (PeHrSc, 'PeHrSc') ;
_LSQBETA (UstarSc, 'UstarSc');
IF BEFORESOLVE THEN
begin

Dar:=0.01*DarSc;

PeMr:=10*PeMrSc;

PeHr:=10*PeHrSc;

Ustar:=10*UstarSc;
end;

end;

_DLSQDEP(_X.Theta.Z[17].I,'Thetazl');
_DLSQDEP (_X.Theta.Zz[39].I, ' 'Thetaz2');
_DLSQDEP (_X.Theta.Zz[50].I, " 'Thetaz3"');
_DLSQDEP (_X.Theta.z[60].I, " 'Thetazd"');
_DLSQDEP (_X.Theta.z[70].I, ' 'Thetaz5"');
_DLSQDEP (_X.Theta.z[80].I, ' 'Thetaz6');
_DLSQDEP (_X.Theta.z[90].I, ' 'Thetaz7"');
_DLSQDEP (_X.Theta.z[100].I, 'Thetaknd"');
_LSQBETA (gamTemp, 'gamTemp') ;

(

(

(

PROCEDURE USERBPR;
begin

_LSQGO; { run LSQ analysis when U key is pressed }
end;

{ Special DMSolver simultaneous system code starts below }
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XVTYPE
AxialArrayTy=RECORD Z:ARRAY[1..100]0F XVR end;

XPROC IDENTI1 (VAROT B:XVR; VARIN A:XVR);
begin

B:=A;
end;

XPROC CBDcalc (VAROT CBZdot:XVR; VARIN CBZM,CBZ,CBZP,RR:XVR) ;
begin

CBZdot:=CValM*CBZM - CValO*CBZ + CValP*CBZP - RR;
end;

XPROC THDcalc (VAROT THZdot:XVR; VARIN THZM, THZ,THZP,RR, QQ:XVR) ;
begin

THZdot :=TValM*THZM - TValO*THZ + TValP*THZP - QQ + DelTadr*RR;
end;

XPROC THWDcalc (VAROT THWdot:XVR; VARIN QQ:XVR) ;
begin

THWdot :=omegaH*QQ;
end;

XPROC RateCalc (VAROT RR:XVR; VARIN THZ,CBZ:XVR) ;
begin

RR:=Dar*CBZ*exp (gamTemp* (1.0-1.0/THZ) ) ;
end;

XPROC Qcalc (VAROT QQ:XVR; VARIN THZ, THW:XVR) ;
begin

QQ:=Ustar*Dar* (THZ-THW) ;

end;

MPROC ZCell (ZID:MODID; VAR CBZM,CBZ,CBZP,THZM, THZ, THZP:XVR) ;
VAR
CbDot, ThetaDot, ThetaW, ThetaWdot, Rate, Q:XVR;
begin
CBDcalc (CbDot,CBZM, CBZ, CBZP,Rate) ;
THDcalc (ThetaDot, THZM, THZ, THZP, Rate, Q) ;
THWDcalc (ThetaWdot, Q) ;
RateCalc (Rate, THZ,CBZ) ;
Qcalc (Q, THZ, ThetaW) ;
PMSINTEG (CBZ, CbDot) ;
PMSINTEG (THZ, ThetaDot) ;
PMSINTEG (ThetaW, ThetaWdot) ;
end;

MPROC SYSTEM;
VAR
PsiB, ThetalO:XVR;
ConcB, Theta:AxialArrayTY;
_J:SMALLINT;
begin
72Cell('Z1',PsiB,ConcB.Z[1],ConcB.Z[2],Theta0, Theta.z[1],Theta.Z[2]);
MFOR J:=2 TO 99 DO
ZCell ('2Z',ConcB.Z[ J-1],ConcB.Z[_ J]
,ConcB.Z[ J+1],Theta.z[ J-1],Theta.zZ[ J],Theta.z[ J+1]);
IDENT1 (ConcB.Z[100],ConcB.Z[99]) ;
IDENT1 (Theta.Zz[100], Theta.z[99]);
end;
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